C++ is Fun - Part Eight

at Turbine/Warner Bros.!

Go over projects first!

For all you Black Jack-programming
fiends:

http://courses.ischool.berkeley.edu/i90/f11/resources/chapter09/blackjack.py

Blackjack
From 1 to 7 players compete against a dealer

import cards, games

class BJ_Card(cards.Card):
""" A Blackjack Card. """
ACE_VALUE =1

@property
def value(self):
if self.is_face_up:
v = BJ_Card.RANKS.index(self.rank) + 1
if v>10:
v=10
else:
v = None
returnv

Overview of Standard Library headers

Standard Library
header

<iostream>

<iomanip>

<cmath>

<cstdTib>

<ctime>

Explanation

Contains function prototypes for the C++ standard input and output
functions, introduced in Chapter 2, and is covered in more detail in
Chapter 15, Stream Input/Output.

Contains function prototypes for stream manipulators that format
streams of data. This header is first used in Section 4.9 and is discussed in
more detail in Chapter 15, Stream Input/Output.

Contains function prototypes for math library functions (Section 6.3).

Contains function prototypes for conversions of numbers to text, text to
numbers, memory allocation, random numbers and various other utility
functions. Portions of the header are covered in Section 6.7; Chapter 11,
Operator Overloading; Class string; Chapter 16, Exception Handling: A
Deeper Look; Chapter 21, Bits, Characters, C Strings and structs; and
Appendix F, C Legacy Code Topics.

Contains function prototypes and types for manipulating the time and
date. This header is used in Section 6.7.

Standard Library

header

<vectors>, <list>,
<deque>, <queue>,

<stack>, <map>,

<set>, <bitset>

<cctype>

<cstring>

<typeinfo>

<exception>,

<stdexcept>

<memory>

<fstream>

<string>

<sstream>

<functional>

<iterator>

<algorithm>

<cassert>

<cfloat>
<climits>

<cstdio>

<locale>

Explanation

These headers contain classes that implement the C++ Standard Library
containers. Containers store data during a program’s execution. The
<vector> header is first introduced in Chapter 7, Arrays and Vectors. We
discuss all these headers in Chapter 22, Standard Template Library
(STL).

Contains function prototypes for functions that test characters for certain
properties (such as whether the character is a digit or a punctuation), and
function prototypes for functions that can be used to convert lowercase
letters to uppercase letters and vice versa. These topics are discussed in
Chapter 21, Bits, Characters, C Strings and structs.

Contains function prototypes for C-style string-processing functions. This
header is used in Chapter 11, Operator Overloading; Class string.
Contains classes for runtime type identification (determining data types
at execution time). This header is discussed in Section 13.8.

These headers contain classes that are used for exception handling (dis-
cussed in Chapter 16, Exception Handling: A Deeper Look).

Contains classes and functions used by the C++ Standard Library to allo-
cate memory to the C++ Standard Library containers. This header is used
in Chapter 16, Exception Handling: A Deeper Look.

Contains function prototypes for functions that perform input from and
output to files on disk (discussed in Chapter 17, File Processing).
Contains the definition of class string from the C++ Standard Library
(discussed in Chapter 18, Class string and String Stream Processing).
Contains function prototypes for functions that perform input from
strings in memory and output to strings in memory (discussed in
Chapter 18, Class string and String Stream Processing).

Contains classes and functions used by C++ Standard Library algorithms.
This header is used in Chapter 22.

Contains classes for accessing data in the C++ Standard Library contain-
ers. This header is used in Chapter 22.

Contains functions for manipulating data in C++ Standard Library con-
tainers. This header is used in Chapter 22.

Contains macros for adding diagnostics that aid program debugging.
This header is used in Appendix E, Preprocessor.

Contains the floating-point size limits of the system.
Contains the integral size limits of the system.

Contains function prototypes for the C-style standard input/output
library functions.

Contains classes and functions normally used by stream processing to
process data in the natural form for different languages (e.g., monetary
formats, sorting strings, character presentation, etc.).

Function Templates

Overloaded functions are normally used to perform similar operations that involve differ-
ent program logic on different data types. If the program logic and operations are identical

for each data type, overloading may be performed more compactly and conveniently by
using function templates. You write a single function template definition. Given the ar-
gument types provided in calls to this function, C++ automatically generates separate
function template specializations to handle each type of call appropriately. Thus, defining
a single function template essentially defines a whole family of overloaded functions.
Figure 6.26 defines a maximum function template (lines 3—17) that determines the largest
of three values. All function template definitions begin with the template keyword (line 3)
followed by a template parameter list to the function template enclosed in angle brackets (<
and >). Every parameter in the template parameter list (often referred to as a formal type
parameter) is preceded by keyword typename or keyword class (they are synonyms in this
context). The formal type parameters are placeholders for fundamental types or user-defined
types. These placeholders, in this case, T, are used to specify the types of the function’s
parameters (line 4), to specify the function’s return type (line 4) and to declare variables
within the body of the function definition (line 6). A function template is defined like any
other function, but uses the formal type parameters as placeholders for actual data types.

1 // Fig. 6.26: maximum.h

2 // Definition of function template maximum.

3 template < typename T > // or template< typename T >

4 T maximum(C T valuel, T value2, T value3)

5 {

6 T maximumValue = valuel; // assume valuel is maximum

7

8 // determine whether value2 is greater than maximumValue
9 if (value2 > maximumValue)
10 maximumValue = value2;
11
12 // determine whether value3 is greater than maximumValue
13 if (value3 > maximumValue)
14 maximumValue = value3;
15
16 return maximumValue;

17 1} // end function template maximum

Fig. 6.26 | Function template maximum header.

The function template declares a single formal type parameter T (line 3) as a placeholder
for the type of the data to be tested by function maximum. The name of a type parameter must
be unique in the template parameter list for a particular template definition. When the com-
piler detects a maximum invocation in the program source code, the #ype of the data passed to
maximum is substituted for T throughout the template definition, and C++ creates a complete
function for determining the maximum of three values of the specified data type—all three
must have the same type, since we use only one type parameter in this example. Then the
newly created function is compiled. Thus, templates are a means of code generation.

Figure 6.27 uses the maximum function template to determine the largest of three int
values, three double values and three char values, respectively (lines 17, 27 and 37). Sep-
arate functions are created as a result of the calls in lines 17, 27 and 37—expecting three
int values, three double values and three char values, respectively. The function template
specialization created for type int replaces each occurrence of T with int as follows:

// Definition of function template maximum.
template < class T > // or template< typename T >
T maximum(T valuel, T value2, T value3)

{

T maximumValue = valuel; // assume valuel is maximum

// determine whether value2 is greater than maximumValue
if (value2 > maximumValue)
maximumValue = value2;

// determine whether value3 is greater than maximumValue
if (value3 > maximumValue)
maximumValue = value3;

return maximumValue;
}// end function template maximum

#include <iostream>
#include "maximum.h" // include definition of function template
maximum

using namespace std;

int main()

{

// demonstrate maximum with int values
intintl, int2, int3;

cout << "Input three integer values: ";
cin >> intl >> int2 >> int3;

// invoke int version of maximum
cout << "The maximum integer value is: "
<< maximum(intl, int2, int3);

// demonstrate maximum with double values
double doublel, double2, double3;

cout << "\n\nInput three double values: ";
cin >> doublel >> double2 >> double3;

// invoke double version of maximum
cout << "The maximum double value is: "
<< maximum(doublel, double2, double3);

// demonstrate maximum with char values
char charl, char2, char3;

cout << "\n\nInput three characters: ";
cin >> charl >> char2 >> char3;

// invoke char version of maximum
cout << "The maximum character value is: "
<< maximum(charl, char2, char3) << endl;
}// end main

Math library fun-ctions

Function

Description

Example

ceil(x)

cos(x)

exp(x)

fabs(x)

floor(x)

fmod(x, y)

Tog(x)

T1ogl0(x)

pow(x, y)

sin(x)

sqrt(x)

tan(x)

rounds x to the smallest inte-
ger not less than x

trigonometric cosine of x
(x in radians)

exponential function ¢

absolute value of x

rounds x to the largest integer
not greater than x

remainder of x/y as a floating-
point number

natural logarithm of x (base ¢)

logarithm of x (base 10)

x raised to power y (%)

trigonometric sine of x
(x in radians)

square root of x (where x is a
nonnegative value)

trigonometric tangent of x
(x in radians)

ceil(9.2) is 10.0
ceil(-9.8) is -9.0

cos(0.0) is 1.0

exp(1.0) 1s 2.718282
exp(2.0) is 7.389056

fabs(5.1) is 5.1
fabs(0.0) is 0.0
fabs(-8.76) is 8.76

floor(9.2) is 9.0
floor(-9.8) is -10.0

fmod(2.6, 1.2) 1s 0.2

Tog(2.718282) is 1.0
Tog(7.389056) is 2.0

1og10(10.0) is 1.0
10g10(100.0) is 2.0

pow(2, 7) is 128
pow(9, .5) is 3
sin(0.0) is O

sqrt(9.0) is 3.0

tan(0.0) 1s O

Recursion

For some problems, it’s useful to have functions cal/ themselves. A recursive function is a
function that calls itself, either directly, or indirectly (through another function). [Note:
Although many compilers allow function main to call itself, Section 3.6.1, paragraph 3,
and Section 5.2.2, paragraph 9, of the C++ standard document indicate that main should
not be called within a program or recursively. Its sole purpose is to be the starting point
for program execution.] Recursion is an important topic discussed at length in upper-level
computer science courses. This section and the next present simple examples of recursion.
Figure 6.33 (at the end of Section 6.21) summarizes the extensive recursion examples and
exercises in the book.

We first consider recursion conceptually, then examine two programs containing
recursive functions. Recursive problem-solving approaches have a number of elements in
common. A recursive function is called to solve a problem. The function knows how to
solve only the simplest case(s), or so-called base case(s). If the function is called with a base
case, the function simply returns a result. If the function is called with a more complex
problem, it typically divides the problem into two conceptual pieces—a piece that the
function knows how to do and a piece that it does not know how to do. To make recursion
feasible, the latter piece must resemble the original problem, but be a slightly simpler or
smaller version. This new problem looks like the original, so the function calls a copy of
itself to work on the smaller problem—this is referred to as a recursive call and is also
called the recursion step. The recursion step often includes the keyword return, because
its result will be combined with the portion of the problem the function knew how to solve
to form the result passed back to the original caller, possibly main.

The recursion step executes while the original call to the function is still “open,” i.e.,
it has not yet finished executing. The recursion step can result in many more such recursive
calls, as the function keeps dividing each new subproblem with which the function is
called into two conceptual pieces. In order for the recursion to eventually terminate, each
time the function calls itself with a slightly simpler version of the original problem, this
sequence of smaller and smaller problems must eventually converge on the base case. At
that point, the function recognizes the base case and returns a result to the previous copy
of the function, and a sequence of returns ensues up the line until the original call eventu-
ally returns the final result to main. This sounds quite exotic compared to the kind of
problem solving we've been using to this point. As an example of these concepts at work,
let’s write a recursive program to perform a popular mathematical calculation.

| he factorial ofa nonnegative integer 7, written 7! and I'OIlOllIlCCd “n factorial” 5 is
& & p
the pl'OdllCt

n - (n=1)-n=2)-...-1

with 1! equal to 1, and 0! defined to be 1. For example, 5! is the product5-4-3-.2 -1,
which is equal to 120.

The factorial of an integer, number, greater than or equal to 0, can be calculated iter-
atively (nonrecursively) by using a for statement as follows:

factorial = 1;
for (int counter = number; counter >= 1; --counter)
factorial *= counter;

A recursive definition of the factorial function is arrived at by observing the following
algebraic relationship:

n=n - (n-1)!
For example, 5! is clearly equal to 5 * 4! as is shown by the following:

51=5-4.3.2.1
5!1=5.(4-3-2-1)
5!=5.(4)

The evaluation of 5! would proceed as shown in Fig. 6.28, which illustrates how the
succession of recursive calls proceeds until 1! is evaluated to be 1, terminating the recur-

sion. Figure 6.28(b) shows the values returned from each recursive call to its caller until
the final value is calculated and returned.

Final value = 120

51 5!
l T 51'=5%*24=120is returned
5 * 41 5 % 41
l T 4l =4 * 6 =24 is returned
4 % 31 4 % 31
l T 31=3*2==6Iis returned
3 ® 2l gf @ 2l
l T 2=2*1=2is returned
2 % 1! 2 * 1!
l T | returned
1 1

(a) Procession of recursive calls (b) Values returned from each recursive call

// Demonstrating the recursive function factorial.
#include <iostream>

#include <iomanip>

using namespace std;

unsigned long factorial(unsigned long); // function prototype

int main()
{
// calculate the factorials of 0 through 10
for (int counter = 0; counter <= 10; ++counter)
cout << setw(2) << counter << "l =" << factorial(counter)
<< endl;
}// end main

// recursive definition of function factorial
unsigned long factorial(unsigned long number)
{
if (number <=1) // test for base case
return 1; // base cases: 0! =1and 1! =1
else // recursion step
return number * factorial(number-1);
}// end function factorial

Another Example Recursion

The Fibonacci series
0,1,1,2,3,5,8, 13, 21, ...

begins with 0 and 1 and has the property that each subsequent Fibonacci number is the
sum of the previous two Fibonacci numbers.

The series occurs in nature and, in particular, describes a form of spiral. The ratio of
successive Fibonacci numbers converges on a constant value of 1.618.... This number,
too, frequently occurs in nature and has been called the golden ratio or the golden mean.
Humans tend to find the golden mean aesthetically pleasing. Architects often design win-
dows, rooms and buildings whose length and width are in the ratio of the golden mean.
Postcards are often designed with a golden mean length/width ratio.

The Fibonacci series can be defined recursively as follows:

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n — 1) + fibonacci(n — 2)

The program of Fig. 6.30 calculates the n#th Fibonacci number recursively by using func-
tion fibonacci. Fibonacci numbers tend to become large quickly, although slower than
factorials do. Therefore, we chose the data type unsigned Tong for the parameter type and
the return type in function fibonacci. Figure 6.30 shows the execution of the program,
which displays the Fibonacci values for several numbers.

Figure 6.31 shows how function fibonacci would evaluate fibonacci(3). This
figure raises some interesting issues about the order in which C++ compilers evaluate the
operands of operators. This is a separate issue from the order in which operators are
applied to their operands, namely, the order dictated by the rules of operator precedence
and associativity. Figure 6.31 shows that evaluating fibonacci(3) causes two recursive
calls, namely, fibonacci (2) and fibonacci(1). In what order are these calls made?

fibonacci(3)

:

return fibonacci(2) + fibonacci(1)
j!/// \\\\
return fibonacci(1) + fibonacci(0) return 1

l l

A A

return 1 return 0O

#include <iostream>
using namespace std;

unsigned long fibonacci(unsigned long); // function prototype

int main()
{
// calculate the fibonacci values of 0 through 10
for (int counter = 0; counter <= 10; ++counter)
cout << "fibonacci(" << counter<<") ="
<< fibonacci(counter) << end|;

// display higher fibonacci values

cout << "fibonacci(20) =" << fibonacci(20) << endl;

cout << "fibonacci(30) =" << fibonacci(30) << end|;

cout << "fibonacci(35) =" << fibonacci(35) << end|l;
}// end main

// recursive function fibonacci
unsigned long fibonacci(unsigned long number)
{
if ((number==0) || (number==1))// base cases
return number;
else // recursion step
return fibonacci(number - 1) + fibonacci(number -2);
}// end function fibonacci

Inheritance

This chapter continues our discussion of object-oriented programming (OOP) by intro-
ducing inheritance—a form of software reuse in which you create a class that absorbs an
existing class’s capabilities, then customizes or enhances them. Software reuse saves time
during program development by taking advantage of proven, high-quality software.

When creating a class, instead of writing completely new data members and member
functions, you can specify that the new class should inherit the members of an existing
class. This existing class is called the base class, and the new class is called the derived class.
Other programming languages, such as Java and C#, refer to the base class as the super-
class and the derived class as the subclass. A derived class represents a more specialized
group of objects.

C++ offers pubTic, protected and private inheritance. In this chapter, we concen-
trate on public inheritance and briefly explain the other two. With public inbheritance,
every object of a derived class is also an object of that derived classs base class. However, base-
class objects are 7ot objects of their derived classes. For example, if we have Vehicle as a
base class and Car as a derived class, then all Cars are Vehicles, but not all Vehicles are
Cars—for example, a Vehicle could also be a Truck or a Boat.

We distinguish between the 7s-2 relationship and the /as-a relationship. The is-a rela-
tionship represents inheritance. In an 7s-2 relationship, an object of a derived class also can
be treated as an object of its base class—for example, a Car is 2 Vehicle, so any attributes and
behaviors of a Vehicle are also attributes and behaviors of a Car. By contrast, the /as-a rela-
tionship represents composition, which was discussed in Chapter 10. In a bas-a relationship,
an object contains one or more objects of other classes as members. For example, a Car has
many components—it /as a steering wheel, has a brake pedal, has a transmission, etc.

Base class

Derived classes

Student
Shape
Loan
Employee

Account

GraduateStudent, UndergraduateStudent
Circle, Triangle, Rectangle, Sphere, Cube
CarLoan, HomeImprovementLoan, Mortgageloan
Faculty, Staff

CheckingAccount, SavingsAccount

Single
inheritance

Single
inheritance

Single
inheritance

Multiple
inheritance

Teachers. Some Administrators, however, are also Teachers. We've used multiple inberi-
tance to form class AdministratorTeacher. With single inheritance, a class is derived from
one base class. With multiple inheritance, a derived class inherits from #wo or more (possibly
unrelated) base classes. We discuss multiple inheritance in Chapter 24, Other Topics.

Each arrow in the hierarchy (Fig. 12.2) represents an #s-z relationship. For example,
as we follow the arrows in this class hierarchy, we can state “an Employee is 2 Community-
Member” and “a Teacher s 2 Faculty member.” CommunityMember is the direct base class
of Employee, Student and Alumnus. In addition, CommunityMember is an indirect base
class of all the other classes in the diagram. An indirect base class is inherited from two or
more levels up the class hierarchy.

Starting from the bottom of the diagram, you can follow the arrows upwards and apply
the is- relationship to the topmost base class. For example, an AdministratorTeacher is an
Administrator, is 2 Faculty member, 7s 2z Employee and Zs @ CommunityMember.

Shape Class Hierarchy

Now consider the Shape inheritance hierarchy in Fig. 12.3. This hierarchy begins with
base class Shape. Classes TwoDimensionalShape and ThreeDimensionalShape derive from
base class Shape—a Shape is 2 TwoDimensionalShape or is 2 ThreeDimensionalShape.
The third level of this hierarchy contains more specific types of TwoDimensionalShapes and
ThreeDimensionalShapes. As in Fig. 12.2, we can follow the arrows from the bottom of
the diagram upwards to the topmost base class in this hierarchy to identify several 7s-a re-
lationships. For instance, a Triangle 7s 2 TwoDimensionalShape and is 2 Shape, while a
Sphere is 2 ThreeDimensionalShape and is 2 Shape.

Fig. 12.3 | Inheritance hierarchy for Shapes.

To specify that class TwoDimensionalShape (Fig. 12.3) is derived from (or inherits
from) class Shape, class TwoDimensionalShape’s definition could begin as follows:

class TwoDimensionalShape : public Shape

This is an example of public inheritance, the most commonly used form. We'll also
discuss private inheritance and protected inheritance (Section 12.6). With all forms of
inheritance, private members of a base class are 7or accessible directly from that class’s
derived classes, but these private base-class members are still inherited (i.e., they’re still
considered parts of the derived classes). With pub11ic inheritance, all other base-class mem-

class. In this section, we introduce the access specifier protected.

Using protected access offers an intermediate level of protection between pub1ic and
private access. A base class’s protected members can be accessed within the body of that
base class, by members and friends of that base class, and by members and friends of any
classes derived from that base class.

Derived-class member functions can refer to public and protected members of the
base class simply by using the member names. When a derived-class member function
redefines a base-class member function, the base-class member can still be accessed from
the derived class by preceding the base-class member name with the base-class name and
the scope resolution operator (::). We discuss accessing redefined members of the base

Why use inheritance?

OooO~NSNUNDR WN -

// Fig. 12.10: BasePlusCommissionEmployee.h

// BasePlusCommissionEmployee class derived from class
// CommissionEmployee.

#ifndef

#define

#include <string> // C++ standard string class
#include // CommissionEmployee class declaration
using namespace std;

class BasePTusCommissionEmployee : public CommissionEmployee
{
public:
BasePTusCommissionEmployee(const string &, const string &,
const string &, double = , double = , double =);

void setBaseSalary(double); // set base salary
double getBaseSalary() const; // return base salary

double earnings() const; // calculate earnings

void print() const; // print BasePlusCommissionEmpTloyee object
private:

double baseSalary; // base salary
}; // end class BasePlusCommissionEmployee

#endif

Why?

We literally copied code from class CommissionEmpTloyee and pasted it into class Base-
PTusCommissionEmpTloyee, then modified class BasePTusCommissionEmpTloyee to include
a base salary and member functions that manipulate the base salary. This copy-and-paste
approach is error prone and time consuming,.

Software Engineering Observation 12.1

Copying and pasting code from one class to another can spread many physical copies of
the same code and can spread errors throughout a system, creating a code-maintenance
nightmare. To avoid duplicating code (and possibly errors), use inheritance, rather than
the “copy-and-paste” approach, in situations where you want one class to “absorb” the
data members and member functions of another class.

Software Engineering Observation 12.2

With inheritance, the common data members and member functions of all the classes in
the hierarchy are declared in a base class. When changes are required for these common
[features, you need to make the changes only in the base class—derived classes then inherit
the changes. Without inberitance, changes would need to be made to all the source code
files that contain a copy of the code in question.

Why use inheritance? -- Just change
one function

o4
85 // calculate earnings
86 double CommissionEmployee::earnings() const

87 {

88 return commissionRate * grossSales;
89 1} // end function earnings

90

91 // print CommissionEmpTloyee object
92 void CommissionEmployee::print() const

93 {

94 cout << << firstName << << TlastName
95 << << socialSecurityNumber

96 << << grossSales

97 << << commissionRate;

98 1} // end function print

32 // calculate earnings
33 double BasePlusCommissionEmployee::earnings() const

34 {
35 // derived class cannot access the base class’s private data
36 return baseSalary + (commissionRate * grossSales);

37 1} // end function earnings
38

32 // calculate earnings
33 double BasePlusCommissionEmployee::earnings() const
34 {

35 // derived class cannot access the base class’s private data
36 return baseSalary + (commissionRate * grossSales);

37 1} // end function earnings

38

39 // print BasePlusCommissionEmployee object
40 void BasePTusCommissionEmployee::print() const

41 {

42 // derived class cannot access the base class’s private data

43 cout << << firstName <<

44 << lastName << << socialSecurityNumber
45 << << grossSales

46 << << commissionRate

47 << << baseSalary;

48 1} // end function print

C:\chhhtp8_exampTes\chl12\Figl2_10 11\BasePTusCommissionEmployee.cpp(36)
error C2248: 'CommissionEmployee::commissionRate'
cannot access private member declared in class 'CommissionEmployee'

C:\chhhtp8_examples\ch12\Figl2_10_11\BasePlusCommissionEmployee.cpp(36)
error C2248: 'CommissionEmployee::grossSales'
cannot access private member declared in class 'CommissionEmployee’

C:\chhhtp8_exampTes\chl12\Figl2_10_11\BasePTusCommissionEmployee.cpp(43)
error C2248: 'CommissionEmployee::firstName'
cannot access private member declared in class 'CommissionEmployee'

C:\chhhtp8_examples\ch12\Figl2_10_11\BasePlusCommissionEmployee.cpp(44)
error C2248: 'CommissionEmployee::lastName'
cannot access private member declared in class 'CommissionEmployee’

C:\chhhtp8_exampTes\chl12\Figl2_10_11\BasePTusCommissionEmployee.cpp(44)
error C2248: 'CommissionEmployee::socialSecurityNumber' :
cannot access private member declared in class 'CommissionEmployee'

C:\chhhtp8_exampTles\ch12\Figl2_10_11\BasePTusCommissionEmployee.cpp(45)
error C2248: 'CommissionEmployee::grossSales'
cannot access private member declared in class 'CommissionEmployee’

Defining Base Class CommissionEmployee with protected Data

Class CommissionEmployee (Fig. 12.12) now declares data members firstName, last-
Name, socialSecurityNumber, grossSales and commissionRate as protected (lines 32—
37) rather than private. The member-function implementations are identical to those in
Fig. 12.5, so CommissionEmployee.cpp is not shown here.

1 // Fig. 12.12: CommissionEmployee.h

2 // CommissionEmployee class definition with protected data.

3 #ifndef COMMISSION H

4 #define COMMISSION_ H

5

6 #include <string> // C++ standard string class

7 using namespace std;

8

9 class CommissionEmployee

10 {

Il public:

12 CommissionEmpTloyee(const string &, const string &, const string &,
13 double = 0.0, double = 0.0);

14

15 void setFirstName(const string &); // set first name

16 string getFirstName() const; // return first name

17

18 void setLastName(const string &); // set last name

19 string getlLastName() const; // return last name
20
21 void setSocialSecurityNumber(const string &); // set SSN
22 string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount
26

27 void setCommissionRate(double); // set commission rate
28 double getCommissionRate() const; // return commission rate
29

30 double earnings() const; // calculate earnings

31 void print() const; // print CommissionEmployee object

32 protected:

33 string firstName;

34 string lastName;

35 string socialSecurityNumber;
36 double grossSales; // gross weekly sales

37 double commissionRate; // commission percentage

38 1}; // end class CommissionEmpTloyee

39

40 #endif

Class Exercise — Check the folder
“CommissionEmployee” on Google
Drive

Homework Exercises (Pick 1)

1) Download and install either

http://www.appgamekit.com/ (2D only, but simpler)

OR

http://www.ogre3d.org/ . Compile, link, and run one of the sample
programs.

2) Implement a simple Tic Tac Toe “Al” strategy. Some sample
implementations of the game are at the following two links:
http://courses.ischool.berkeley.edu/i90/f11/resources/chapter06/tic-tac-

toe.py
http://en.literateprograms.org/Tic Tac Toe (Python)

3) Show the value of x after each of the following statements is performed:

a) x = fabs()

b) x = floor()

c) x = fabs()

d) x = ceil()

e) x = fabs()

f) x = ceil()

g) x = ceil(-fabs(+ floor()))

4)

Self-Review Exercises

12.1

12.2

Fill in the blanks in each of the following statements:

a)
b)
)
d)

e)

i)

j)

k)

is a form of software reuse in which new classes absorb the data and behaviors
of existing classes and embellish these classes with new capabilities.

A base class’s members can be accessed in the base-class definition, in derived-
class definitions and in friends of the base class its derived classes.

In a(n) relationship, an object of a derived class also can be treated as an object
of its base class.

In a(n) relationship, a class object has one or more objects of other classes as
members.

In single inheritance, a class exists in a(n) relationship with its derived classes.
A base class’s members are accessible within that base class and anywhere that

the program has a handle to an object of that class or one of its derived classes.
A base class’s protected access members have a level of protection between those of pub-
Tic and access.

C++ provides for , which allows a derived class to inherit from many base class-
es, even if the base classes are unrelated.
When an object of a derived class is instantiated, the base class’s is called im-

plicitly or explicitly to do any necessary initialization of the base-class data members in
the derived-class object.
When deriving a class from a base class with pub1ic inheritance, pub1ic members of the

base class become members of the derived class, and protected members of
the base class become members of the derived class.

When deriving a class from a base class with protected inheritance, pub1ic members of
the base class become members of the derived class, and protected members
of the base class become members of the derived class.

State whether each of the following is #rue or false. If false, explain why.

a)
b)
©)
d)
e)

Base-class constructors are not inherited by derived classes.

A has-a relationship is implemented via inheritance.

A Car class has an 7s-a relationship with the Steeringwheel and Brakes classes.
Inheritance encourages the reuse of proven high-quality software.

When a derived-class object is destroyed, the destructors are called in the reverse order
of the constructors.

